论文标题

k essence古典汉密尔顿方法,用于加速宇宙的扩展,$ω\ of Yout-1 $

k-essence classical Hamiltonian approach for an accelerated expansion of the Universe with $ω\approx-1$

论文作者

Mukherjee, Somnath

论文摘要

我们获得了$ k $ - essence scalial field $ ϕ(r,t)$的拉格朗日,带标量曲率$ k $的Friedmann-Lemaitre-Robertson-Walker(FLRW)Metric。获得的Lagrangian具有两个广义的坐标$ ϕ $和比例因子的对数($ q = \ ln a $)。经典的Hamiltonian $({\ Mathcal H})$是根据两个相应的共轭动量$ p_ {q} $和$ p_ϕ $获得的。解决汉密尔顿运动方程,我们获得了比例因子$ a(t)$,能量密度$ρ$的经典解决方案,状态参数$ω$和减速参数$ q_ {0} $。在$ t \ rightArrow \ infty $的最晚时间,我们有时间缩放因子随时间的指数增长,能量密度$ρ$变为恒定,我们可以将其识别为黑暗能量密度,状态参数方程将变为$ω\ -1 $,减速参数变为$ q_ {0} {0} {0} \ oft -1 $。所有这些结果表明,由称为暗能量的负压驱动的宇宙的膨胀加速。

We obtain lagrangian for $k$-essence scalar field $ϕ(r,t)$ with scalar curvature $k$ of Friedmann-Lemaitre-Robertson-Walker (FLRW) metric . Obtained lagrangian has two generalised co-ordinates $ϕ$ and logarithm of scale factor ($q=\ln a$). Classical Hamiltonian $({\mathcal H})$ is obtained in terms of two corresponding conjugate momentum $p_{q}$ and $p_ϕ$. Solving Hamilton's equation of motion , we obtain classical solution for scale factor $a(t)$, energy density $ρ$, equation of state parameter $ω$ and deceleration parameter $q_{0}$ . At late time as $t\rightarrow\infty$, we have an exponential growth of scale factor with time, energy density $ρ$ becomes constant, which we can identify as dark energy density, equation of state parameter becomes $ω\approx -1$ and deceleration parameter becomes $ q_{0}\approx -1$. All this results indicates an accelerated expansion of universe driven by negative pressure known as dark energy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源