论文标题

通过基于梯度的优化,概率最佳子集选择

Probabilistic Best Subset Selection via Gradient-Based Optimization

论文作者

Yin, Mingzhang, Ho, Nhat, Yan, Bowei, Qian, Xiaoning, Zhou, Mingyuan

论文摘要

在高维统计中,可变选择从所有可能的协变量组合中恢复了潜在的稀疏模式。本文提出了一种新的优化方法,以解决确切的L0调查回归问题,这也称为最佳子集选择。我们将优化问题从离散空间到连续的优化问题通过概率重新聚体化重新制定。新的目标函数是可以微分的,但通常无法以封闭形式计算其梯度。然后,我们提出了一个无偏梯度估计量的家族,以通过随机梯度下降来优化最佳的子集选择目标。在这个家庭中,我们确定具有统一最小差异的估计器。从理论上讲,我们研究该方法在预期中融合到地面真相的一般条件。提出的方法可以在几秒钟内从数千个协变量中找到真正的回归模型。在各种综合和半合成数据中,所提出的方法在稀疏模式恢复和样本外预测中优于现有的变量选择工具。

In high-dimensional statistics, variable selection recovers the latent sparse patterns from all possible covariate combinations. This paper proposes a novel optimization method to solve the exact L0-regularized regression problem, which is also known as the best subset selection. We reformulate the optimization problem from a discrete space to a continuous one via probabilistic reparameterization. The new objective function is differentiable but its gradient often cannot be computed in a closed form. Then we propose a family of unbiased gradient estimators to optimize the best subset selection objectives by the stochastic gradient descent. Within this family, we identify the estimator with uniformly minimum variance. Theoretically, we study the general conditions under which the method is guaranteed to converge to the ground truth in expectation. The proposed method can find the true regression model from thousands of covariates in seconds. In a wide variety of synthetic and semi-synthetic data, the proposed method outperforms existing variable selection tools based on the relaxed penalties, coordinate descent, and mixed integer optimization in both sparse pattern recovery and out-of-sample prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源