论文标题
关于Hölder连续全球耗散欧拉的非唯一性
On Non-uniqueness of Hölder continuous globally dissipative Euler flows
论文作者
论文摘要
我们表明,对于任何$ \ al <\ frac 17 $,存在$ \ al $-Hölder连续的三维不可压缩的欧拉方程的弱解决方案,它满足了局部能量不平等并严格消散了总动能能量。证明依赖于凸集成方案,解决方案的主要构建块是各种Mikado流动,并在时空上和时间上有不相交的支撑。
We show that for any $\al<\frac 17$ there exist $\al$-Hölder continuous weak solutions of the three-dimensional incompressible Euler equation, which satisfy the local energy inequality and strictly dissipate the total kinetic energy. The proof relies on the convex integration scheme and the main building blocks of the solution are various Mikado flows with disjoint supports in space and time.