论文标题
教师凸的广义线性模型的渐近错误(OR:如何证明Kabashima的副本公式)
Asymptotic Errors for Teacher-Student Convex Generalized Linear Models (or : How to Prove Kabashima's Replica Formula)
论文作者
论文摘要
最近,在教师学生环境中的各种普遍线性估计问题的情况下,最近对渐近重建性能的研究引起了人们的兴趣,尤其是对于I.I.D标准正常矩阵的情况。在这里,我们超越了这些矩阵,并证明了具有旋转不变的数据矩阵的重建性能的分析公式,该模型具有任意有界频谱的旋转不变的数据矩阵,在适当的假设下,在适当的假设下进行了严格确认,最初使用replica方法从统计物理学中衍生出的猜测。通过利用消息传递算法及其迭代的统计特性来实现证明,从而可以表征估计量的渐近经验分布。对于足够的强烈凸出问题,我们表明两层矢量近似消息传递算法(2-MLVAMP)收敛,其中收敛分析是通过检查等效动力学系统的稳定性来完成的,从而为这些问题提供了结果。然后,我们表明,在浓度假设下,可以进行分析延续,以将结果扩展到凸(非严格)问题。我们通过数字示例来说明我们的主张,例如稀疏的逻辑回归和线性支持向量分类器,在中等大小仿真和渐近预测之间显示出极好的一致性。
There has been a recent surge of interest in the study of asymptotic reconstruction performance in various cases of generalized linear estimation problems in the teacher-student setting, especially for the case of i.i.d standard normal matrices. Here, we go beyond these matrices, and prove an analytical formula for the reconstruction performance of convex generalized linear models with rotationally-invariant data matrices with arbitrary bounded spectrum, rigorously confirming, under suitable assumptions, a conjecture originally derived using the replica method from statistical physics. The proof is achieved by leveraging on message passing algorithms and the statistical properties of their iterates, allowing to characterize the asymptotic empirical distribution of the estimator. For sufficiently strongly convex problems, we show that the two-layer vector approximate message passing algorithm (2-MLVAMP) converges, where the convergence analysis is done by checking the stability of an equivalent dynamical system, which gives the result for such problems. We then show that, under a concentration assumption, an analytical continuation may be carried out to extend the result to convex (non-strongly) problems. We illustrate our claim with numerical examples on mainstream learning methods such as sparse logistic regression and linear support vector classifiers, showing excellent agreement between moderate size simulation and the asymptotic prediction.