论文标题
迭代$ s^3 $ SASAKI加入和Bott Orbifolds
Iterated $S^3$ Sasaki Joins and Bott Orbifolds
论文作者
论文摘要
我们提出了迭代的$ S^3 $ SASAKI-JOINS和BOTT ORBIFOLDS之间的分类关系。然后,我们展示了如何在迭代的连接上构建光滑的Sasaki-Einstein(SE)结构。随着尺寸的增长,这些变得越来越复杂。我们为(无限多)平滑的SE结构通过11的尺寸提出了明确的结构,并猜想了所有奇数尺寸中平滑的SE结构的存在。
We present a categorical relationship between iterated $S^3$ Sasaki-joins and Bott orbifolds. Then we show how to construct smooth Sasaki-Einstein (SE) structures on the iterated joins. These become increasingly complicated as dimension grows. We give an explicit construction of (infinitely many) smooth SE structures up through dimension eleven, and conjecture the existence of smooth SE structures in all odd dimensions.