论文标题

通过对抗仿射子空间嵌入,保存隐私的图像功能

Privacy-Preserving Image Features via Adversarial Affine Subspace Embeddings

论文作者

Dusmanu, Mihai, Schönberger, Johannes L., Sinha, Sudipta N., Pollefeys, Marc

论文摘要

许多计算机视觉系统要求用户将图像功能上传到云中进行处理和存储。可以利用这些功能来恢复有关场景或主题的敏感信息,例如,通过重建原始图像的外观。为了解决这种隐私问题,我们提出了一个新的保护隐私功能表示。我们工作的核心思想是通过将其嵌入包含原始功能以及对抗性特征样本的仿射子空间中,从每个功能描述符中删除约束。基于子空间距离距离的概念,启用了隐私保护表示上的功能匹配。我们在实验上证明了我们的方法的有效性及其在视觉定位和映射以及面部身份验证的应用方面的高实践相关性。与原始功能相比,我们的方法使对手更难恢复私人信息。

Many computer vision systems require users to upload image features to the cloud for processing and storage. These features can be exploited to recover sensitive information about the scene or subjects, e.g., by reconstructing the appearance of the original image. To address this privacy concern, we propose a new privacy-preserving feature representation. The core idea of our work is to drop constraints from each feature descriptor by embedding it within an affine subspace containing the original feature as well as adversarial feature samples. Feature matching on the privacy-preserving representation is enabled based on the notion of subspace-to-subspace distance. We experimentally demonstrate the effectiveness of our method and its high practical relevance for the applications of visual localization and mapping as well as face authentication. Compared to the original features, our approach makes it significantly more difficult for an adversary to recover private information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源