论文标题
旁边的软校正drell-yan和higgs玻色子制作
On next to soft corrections to Drell-Yan and Higgs Boson productions
论文作者
论文摘要
我们提出了一个框架,该框架恢复阈值增强了扰动理论中所有阶的大对数,以在drell-yan过程中生产一对lept子,以及在Gluon融合中以及底部夸克nihihitation中的Higgs Boson。我们局限于对角线党渠道的贡献。这些对数包括分布$((1-z)^{ - 1} \ ln^i(1-z))_+$由soft plus plus virtual(sv)和对数$ \ ln^i(1-z)$产生的sext-to-sv(nsv(nsv)贡献。我们使用共线性分解和重量级化组的不变性来实现这一目标。前者允许定义软性(SC)函数,该函数将扰动结果的软和界线动力学封装在强耦合常数中的所有订单中。这些结果的对数结构受SC所满足的通用红外异常维度和Sudakov微分方程的过程相关功能的控制。通过提出一个尺寸正则化的全阶ANSATZ,获得了微分方程的解决方案,这是由于三阶可用的几个最新扰动结果。因此,获得的$ z $太空解决方案提供了不可或缺的表示,以总结源自柔软和共线配置的大型对数,在Mellin $ n $ Space中方便。我们表明,在$ n $空间中,对数塔$ a_s^n/n^α\ ln^{2n-α}(n),a_s^n/n^n^α\ ln \ ln \ ln^{2n-1-α}(2n-1-α}(n)(n)\ cdots $ et for $ $α= 0,1 = 0,1 $。
We present a framework that resums threshold enhanced large logarithms to all orders in perturbation theory for the production of a pair of leptons in Drell-Yan process and of Higgs boson in gluon fusion as well as in bottom quark annihilation. We restrict ourselves to contributions from diagonal partonic channels. These logarithms include the distributions $((1-z)^{-1} \ln^i(1-z))_+$ resulting from soft plus virtual (SV) and the logarithms $\ln^i(1-z)$ from next-to-SV (NSV) contributions. We use collinear factorisation and renormalisation group invariance to achieve this. The former allows one to define a Soft-Collinear (SC) function which encapsulates soft and collinear dynamics of the perturbative results to all orders in strong coupling constant. The logarithmic structure of these results are governed by universal infrared anomalous dimensions and process dependent functions of Sudakov differential equation that the SC satisfies. The solution to the differential equation is obtained by proposing an all-order ansatz in dimensional regularisation, owing to several state-of-the-art perturbative results available to third order. The $z$ space solutions thus obtained provide an integral representation to sum up large logarithms originating from both soft and collinear configurations, conveniently in Mellin $N$ space. We show that in $N$ space, tower of logarithms $a_s^n/N^α\ln^{2n-α} (N), a_s^n/N^α\ln^{2n-1-α}(N) \cdots $ etc for $α=0,1$ are summed to all orders in $a_s$.