论文标题

灵活的参数加速失败时间模型

A flexible parametric accelerated failure time model

论文作者

Crowther, Michael J., Royston, Patrick, Clements, Mark

论文摘要

加速故障时间(AFT)模型在医学研究中广泛使用,尽管程度远低于比例危害模型。在船尾模型中,协变量的效果是加速或减速感兴趣的时间,即缩短或延长事件的时间。常用的参数AFT模型在它们可以捕获的基础形状中受到限制。在本文中,我们提出了一个通用的参数AFT模型,特别是专注于使用限制的立方花纹对基线进行建模以提供实质性灵活性。然后,我们扩展模型以适应时间依赖的加速度因子。还允许延迟进入,因此也依赖时间依赖于协变量。我们通过仿真评估了所提出的模型,与标准参数AFT模型相比,显示了实质性改进。我们还通过分析表明,通过模拟表明AFT模型可折叠,这表明该模型类将非常适合因果推断。我们用乳腺癌患者数据集说明了这些方法。提供了用户友好的Stata和R软件包。

Accelerated failure time (AFT) models are used widely in medical research, though to a much lesser extent than proportional hazards models. In an AFT model, the effect of covariates act to accelerate or decelerate the time to event of interest, i.e. shorten or extend the time to event. Commonly used parametric AFT models are limited in the underlying shapes that they can capture. In this article, we propose a general parametric AFT model, and in particular concentrate on using restricted cubic splines to model the baseline to provide substantial flexibility. We then extend the model to accommodate time-dependent acceleration factors. Delayed entry is also allowed, and hence, time-dependent covariates. We evaluate the proposed model through simulation, showing substantial improvements compared to standard parametric AFT models. We also show analytically and through simulations that the AFT models are collapsible, suggesting that this model class will be well suited to causal inference. We illustrate the methods with a dataset of patients with breast cancer. User friendly Stata and R software packages are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源