论文标题

k-Moduli曲线在二次表面和K3表面上

K-moduli of curves on a quadric surface and K3 surfaces

论文作者

Ascher, Kenneth, DeVleming, Kristin, Liu, Yuchen

论文摘要

我们表明,logo fano对的k-moduli空间$(\ mathbb {p}^1 \ times \ mathbb {p}^1,cc $,其中$ c $是$(4,4)$ - 曲线及其墙壁交叉及其墙壁交叉点,与vgit的vgit conciese cos cos vgit cos of $(2,4)$(2,4)$完整的Intersection curves $ nth $} $ { This, together with recent results by Laza-O'Grady, implies that these K-moduli spaces form a natural interpolation between the GIT moduli space of $(4,4)$-curves on $\mathbb{P}^1\times\mathbb{P}^1$ and the Baily-Borel compactification of moduli of quartic hyperelliptic K3 surfaces.

We show that the K-moduli spaces of log Fano pairs $(\mathbb{P}^1\times\mathbb{P}^1, cC)$ where $C$ is a $(4,4)$-curve and their wall crossings coincide with the VGIT quotients of $(2,4)$ complete intersection curves in $\mathbb{P}^3$. This, together with recent results by Laza-O'Grady, implies that these K-moduli spaces form a natural interpolation between the GIT moduli space of $(4,4)$-curves on $\mathbb{P}^1\times\mathbb{P}^1$ and the Baily-Borel compactification of moduli of quartic hyperelliptic K3 surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源