论文标题
k-Moduli曲线在二次表面和K3表面上
K-moduli of curves on a quadric surface and K3 surfaces
论文作者
论文摘要
我们表明,logo fano对的k-moduli空间$(\ mathbb {p}^1 \ times \ mathbb {p}^1,cc $,其中$ c $是$(4,4)$ - 曲线及其墙壁交叉及其墙壁交叉点,与vgit的vgit conciese cos cos vgit cos of $(2,4)$(2,4)$完整的Intersection curves $ nth $} $ { This, together with recent results by Laza-O'Grady, implies that these K-moduli spaces form a natural interpolation between the GIT moduli space of $(4,4)$-curves on $\mathbb{P}^1\times\mathbb{P}^1$ and the Baily-Borel compactification of moduli of quartic hyperelliptic K3 surfaces.
We show that the K-moduli spaces of log Fano pairs $(\mathbb{P}^1\times\mathbb{P}^1, cC)$ where $C$ is a $(4,4)$-curve and their wall crossings coincide with the VGIT quotients of $(2,4)$ complete intersection curves in $\mathbb{P}^3$. This, together with recent results by Laza-O'Grady, implies that these K-moduli spaces form a natural interpolation between the GIT moduli space of $(4,4)$-curves on $\mathbb{P}^1\times\mathbb{P}^1$ and the Baily-Borel compactification of moduli of quartic hyperelliptic K3 surfaces.