论文标题

封建转向:转向角度预测的分层学习

Feudal Steering: Hierarchical Learning for Steering Angle Prediction

论文作者

Johnson, Faith, Dana, Kristin

论文摘要

我们考虑使用以自动驾驶的自动转向角度预测的挑战。在这项工作中,我们探讨了用于分层增强学习(HRL)的封建网络的使用,以设计车辆代理,以预测第一人称驾驶数据集的DASH-CAM图像的转向角度。我们的方法是封建转向,灵感来自HRL的最新工作,该工作由经理网络和工人网络组成,该网络以不同的时间尺度运行并具有不同的目标。与工人相比,经理的时间尺度相对粗糙,并且具有更高的级别,面向任务的目标空间。使用封建学习将任务分为经理和Worker子网络提供了更准确,更强大的预测。驾驶中的时间抽象可以比单个时间实例的转向角度更复杂的原语。复合动作包括可以在整个驾驶顺序中重复使用的子例程或技能。相关的子例程ID是经理网络的目标,因此经理寻求在高级任务中取得成功(例如,右转急转弯,右转轻微,交通直线移动或直接移动流量不受交通的直接移动)。特定时间实例的转向角度是工作网络输出,该输出由经理的高级任务调节。我们在Udacity数据集上展示了最新的转向角度预测结果。

We consider the challenge of automated steering angle prediction for self driving cars using egocentric road images. In this work, we explore the use of feudal networks, used in hierarchical reinforcement learning (HRL), to devise a vehicle agent to predict steering angles from first person, dash-cam images of the Udacity driving dataset. Our method, Feudal Steering, is inspired by recent work in HRL consisting of a manager network and a worker network that operate on different temporal scales and have different goals. The manager works at a temporal scale that is relatively coarse compared to the worker and has a higher level, task-oriented goal space. Using feudal learning to divide the task into manager and worker sub-networks provides more accurate and robust prediction. Temporal abstraction in driving allows more complex primitives than the steering angle at a single time instance. Composite actions comprise a subroutine or skill that can be re-used throughout the driving sequence. The associated subroutine id is the manager network's goal, so that the manager seeks to succeed at the high level task (e.g. a sharp right turn, a slight right turn, moving straight in traffic, or moving straight unencumbered by traffic). The steering angle at a particular time instance is the worker network output which is regulated by the manager's high level task. We demonstrate state-of-the art steering angle prediction results on the Udacity dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源