论文标题

学习旅行销售人员问题需要重新思考概括

Learning the Travelling Salesperson Problem Requires Rethinking Generalization

论文作者

Joshi, Chaitanya K., Cappart, Quentin, Rousseau, Louis-Martin, Laurent, Thomas

论文摘要

对于图形组合优化问题的神经网络求解器的端到端培训,例如旅行销售人员问题(TSP),最近引起了人们的关注激增,但除了数百个节点的图形之外,远远超出了图形。尽管在琐碎的尺寸训练时,最先进的TSP学习驱动方法与经典求解器紧密相关,但他们无法将学习的政策推广到实际规模的更大实例。这项工作提出了端到端的神经组合优化管道,该管道统一了最近的几篇论文,以确定归纳偏见,模型架构和学习算法,这些算法促进对比培训中所见的实例更大的实例的概括。我们的对照实验提供了对这种零弹性概括的第一个原则研究,表明除了训练数据之外,还需要重新思考神经组合优化管道,从网络层和学习范式到评估协议。此外,我们分析了通过管道镜头的深度学习进展,并提供了刺激未来研究的新方向。

End-to-end training of neural network solvers for graph combinatorial optimization problems such as the Travelling Salesperson Problem (TSP) have seen a surge of interest recently, but remain intractable and inefficient beyond graphs with few hundreds of nodes. While state-of-the-art learning-driven approaches for TSP perform closely to classical solvers when trained on trivially small sizes, they are unable to generalize the learnt policy to larger instances at practical scales. This work presents an end-to-end neural combinatorial optimization pipeline that unifies several recent papers in order to identify the inductive biases, model architectures and learning algorithms that promote generalization to instances larger than those seen in training. Our controlled experiments provide the first principled investigation into such zero-shot generalization, revealing that extrapolating beyond training data requires rethinking the neural combinatorial optimization pipeline, from network layers and learning paradigms to evaluation protocols. Additionally, we analyze recent advances in deep learning for routing problems through the lens of our pipeline and provide new directions to stimulate future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源