论文标题
TorsionNet:一种加固学习方法,用于顺序构象异构搜索
TorsionNet: A Reinforcement Learning Approach to Sequential Conformer Search
论文作者
论文摘要
柔性分子或构象搜索的分子几何预测是计算化学中的长期挑战。这项任务对于预测从生物分子到无处不在材料的各种物质的结构活性关系至关重要。大量的计算资源投入到蒙特卡洛和分子动力学方法上,以生成中等至大分子的多样化和代表性构象体集,这些分子尚不适合化学构象构象异构体搜索方法。我们提出TorsionNet,这是一种基于刚性转子近似下的增强学习的有效顺序构象搜索技术。该模型是通过课程学习训练的,其理论益处是详细探讨的,以最大程度地提高以称为Gibbs评分的热力学基础的新型度量。我们的实验结果表明,TorsionNet在大型分支烷烃上的表现优于4倍评分的化学信息信息,并且在先前未开发的生物聚合物木质素上的几个数量级,并应用可再生能量。
Molecular geometry prediction of flexible molecules, or conformer search, is a long-standing challenge in computational chemistry. This task is of great importance for predicting structure-activity relationships for a wide variety of substances ranging from biomolecules to ubiquitous materials. Substantial computational resources are invested in Monte Carlo and Molecular Dynamics methods to generate diverse and representative conformer sets for medium to large molecules, which are yet intractable to chemoinformatic conformer search methods. We present TorsionNet, an efficient sequential conformer search technique based on reinforcement learning under the rigid rotor approximation. The model is trained via curriculum learning, whose theoretical benefit is explored in detail, to maximize a novel metric grounded in thermodynamics called the Gibbs Score. Our experimental results show that TorsionNet outperforms the highest scoring chemoinformatics method by 4x on large branched alkanes, and by several orders of magnitude on the previously unexplored biopolymer lignin, with applications in renewable energy.