论文标题

Web Publisher RTB收入的实时优化

Real-Time Optimization Of Web Publisher RTB Revenues

论文作者

Chahuara, Pedro, Grislain, Nicolas, Jauvion, Grégoire, Renders, Jean-Michel

论文摘要

本文介绍了一种引擎,以优化第二价格拍卖中的Web发布者收入。这些拍卖被广泛用于以称为实时竞标(RTB)的机制销售在线广告空间。这些拍卖中的优化对于网络发布者至关重要,因为设定适当的储备价格可以大大增加收入。我们考虑一个实用的现实环境,在拍卖之前唯一可用的信息由用户标识符和广告放置标识符组成。我们必须应对的现实挑战主要包括在高度非平稳的环境中跟踪对用户和位置的依赖性以及处理审查的投标观察。这些挑战使我们做出了以下设计选择:(i)我们基于增量的时间加权矩阵分解,采用了相对简单的非参数回归模型,该模型隐含地构建了适应性用户和位置的配置文件; (ii)我们基于AALEN添加剂模型的在线扩展,共同使用非参数模型在审查时估算第一和第二竞标的分布。 我们的引擎是部署系统的组成部分,该系统处理世界各地数以百亿个网络出版商,每天为数十亿访问者提供数十亿个广告。该发动机能够预测每次拍卖的最佳储备价格,大约一毫秒,并为Web发行商带来大幅度的收入。

This paper describes an engine to optimize web publisher revenues from second-price auctions. These auctions are widely used to sell online ad spaces in a mechanism called real-time bidding (RTB). Optimization within these auctions is crucial for web publishers, because setting appropriate reserve prices can significantly increase revenue. We consider a practical real-world setting where the only available information before an auction occurs consists of a user identifier and an ad placement identifier. The real-world challenges we had to tackle consist mainly of tracking the dependencies on both the user and placement in an highly non-stationary environment and of dealing with censored bid observations. These challenges led us to make the following design choices: (i) we adopted a relatively simple non-parametric regression model of auction revenue based on an incremental time-weighted matrix factorization which implicitly builds adaptive users' and placements' profiles; (ii) we jointly used a non-parametric model to estimate the first and second bids' distribution when they are censored, based on an on-line extension of the Aalen's Additive model. Our engine is a component of a deployed system handling hundreds of web publishers across the world, serving billions of ads a day to hundreds of millions of visitors. The engine is able to predict, for each auction, an optimal reserve price in approximately one millisecond and yields a significant revenue increase for the web publishers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源