论文标题

激活功能的功耗变化

Power Consumption Variation over Activation Functions

论文作者

Derczynski, Leon

论文摘要

机器学习模型在做出预测时消耗的力量可能会受到模型架构的影响。本文介绍了各种不同激活功能的功耗的各种估计值,这是神经网络模型架构设计的核心因素。激活功能之间存在硬件性能的实质性差异。这种差异介绍了如何减少机器学习模型中的功耗。

The power that machine learning models consume when making predictions can be affected by a model's architecture. This paper presents various estimates of power consumption for a range of different activation functions, a core factor in neural network model architecture design. Substantial differences in hardware performance exist between activation functions. This difference informs how power consumption in machine learning models can be reduced.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源