论文标题
非含量渗透传导和Poole Frenkel定律的数值建模
Numerical modeling of nonohmic percolation conduction and Poole Frenkel laws
论文作者
论文摘要
我们提出了一个数值模型,该模型模拟表现出渗透传导的材料的电流 - 电压(I-V)特性。该模型由在外部电场的存在下的二维网格组成。我们获得了验证早期分析预测的指数非OHMIC I-V特征,并与非晶体材料中普通素定律的多个实验观察一致。小于渗透簇L的相关长度的样品的电压是线性的,而平方根的平方根是大于L的样品的电压。
We present a numerical model that simulates the current-voltage (I-V) characteristics of materials that exhibit percolation conduction. The model consists of a two dimensional grid of exponentially different resistors in the presence of an external electric field. We obtained exponentially non-ohmic I-V characteristics validating earlier analytical predictions and consistent with multiple experimental observations of the Poole-Frenkel laws in non-crystalline materials. The exponents are linear in voltage for samples smaller than the correlation length of percolation cluster L, and square root in voltage for samples larger than L.