论文标题

扰动双统一电路的相关性:有效的路径综合公式

Correlations in Perturbed Dual-Unitary Circuits: Efficient Path-Integral Formula

论文作者

Kos, Pavel, Bertini, Bruno, Prosen, Tomaž

论文摘要

与可显式访问的时空相关函数相互作用的多体系统极为罕见,尤其是在没有整合性的情况下。最近,我们确定了一类非凡的系统,并将其称为双重独立量子电路。这些是砖墙类型的局部量子电路,其动力在时间和空间上都是统一的。对于这些系统,时空相关函数仅在因果光锥的边缘是非平凡的,并且可以根据一维转移矩阵进行计算。然而,双重非军事需要微调,观察到的动力学特征的通用性仍然不清楚。在这里,我们通过引入当地门的任意扰动来解决这个问题。考虑到固定的扰动,我们证明,对于一类不受干扰的基本双单位门,相关函数仍以一维转移矩阵表示。但是,这些矩阵现在已通过将原点连接到因果光锥体内的固定端点的通用路径收缩。在所有此类路径上,相关函数作为总和给出。我们的陈述在“稀释极限”中是严格的,其中只有一小部分的大门受到干扰,并且在存在随机纵向场的情况下,但是我们提供了理论上的参数和严格的数值检查,即使在干净的情况下以及所有门的扰动时也支持其有效性。作为副产品,在随机纵向场的情况下(事实证明这等同于某些经典的马尔可夫链),我们发现四种类型的非偶发性(和不可累积的)相互作用的多体系统,其中相关函数由路径 - 苏姆公式完全给出。

Interacting many-body systems with explicitly accessible spatio-temporal correlation functions are extremely rare, especially in the absence of integrability. Recently, we identified a remarkable class of such systems and termed them dual-unitary quantum circuits. These are brick-wall type local quantum circuits whose dynamics are unitary in both time and space. For these systems the spatio-temporal correlation functions are non-trivial only at the edge of the causal light cone and can be computed in terms of one-dimensional transfer matrices. Dual-unitarity, however, requires fine-tuning and the degree of generality of the observed dynamical features remained unclear. Here we address this question by introducing arbitrary perturbations of the local gates. Considering fixed perturbations, we prove that for a particular class of unperturbed elementary dual-unitary gates the correlation functions are still expressed in terms of one-dimensional transfer matrices. These matrices, however, are now contracted over generic paths connecting the origin to a fixed endpoint inside the causal light cone. The correlation function is given as a sum over all such paths. Our statement is rigorous in the "dilute limit", where only a small fraction of the gates is perturbed, and in the presence of random longitudinal fields, but we provide theoretical arguments and stringent numerical checks supporting its validity even in the clean case and when all gates are perturbed. As a byproduct, in the case of random longitudinal fields -- which turns out to be equivalent to certain classical Markov chains -- we find four types of non-dual-unitary(and non-integrable) interacting many-body systems where the correlation functions are exactly given by the path-sum formula.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源