论文标题

CPR:持续学习的分类器预测正规化

CPR: Classifier-Projection Regularization for Continual Learning

论文作者

Cha, Sungmin, Hsu, Hsiang, Hwang, Taebaek, Calmon, Flavio P., Moon, Taesup

论文摘要

我们提出了一个通用但简单的补丁,可以应用于称为分类器预测正则化(CPR)的现有基于正则化的持续学习方法。受局部最小值和信息理论的神经网络的最新结果的启发,CPR添加了一个附加的正则化项,可最大程度地提高分类器输出概率的熵。我们证明,这个附加术语可以解释为分类器输出对均匀分布给出的条件概率的投影。通过将毕达哥拉斯定理应用于KL差异,我们然后证明该投影(从理论上)可以提高连续学习方法的性能。在我们广泛的实验结果中,我们将CPR应用于流行的图像识别数据集上的几种基于最新的正规化持续学习方法和基准性能。我们的结果表明,CPR确实促进了广泛的局部最小值,并显着提高了准确性和可塑性,同时减轻了基线持续学习方法的灾难性忘记。该工作的代码和脚本可在https://github.com/csm9493/cpr_cl上找到。

We propose a general, yet simple patch that can be applied to existing regularization-based continual learning methods called classifier-projection regularization (CPR). Inspired by both recent results on neural networks with wide local minima and information theory, CPR adds an additional regularization term that maximizes the entropy of a classifier's output probability. We demonstrate that this additional term can be interpreted as a projection of the conditional probability given by a classifier's output to the uniform distribution. By applying the Pythagorean theorem for KL divergence, we then prove that this projection may (in theory) improve the performance of continual learning methods. In our extensive experimental results, we apply CPR to several state-of-the-art regularization-based continual learning methods and benchmark performance on popular image recognition datasets. Our results demonstrate that CPR indeed promotes a wide local minima and significantly improves both accuracy and plasticity while simultaneously mitigating the catastrophic forgetting of baseline continual learning methods. The codes and scripts for this work are available at https://github.com/csm9493/CPR_CL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源