论文标题

在神经数据中发现非欧几里得潜在结构的歧管GPLVM

Manifold GPLVMs for discovering non-Euclidean latent structure in neural data

论文作者

Jensen, Kristopher T., Kao, Ta-Chu, Tripodi, Marco, Hennequin, Guillaume

论文摘要

神经科学中的一个普遍问题是阐明行为重要变量的集体神经表示,例如头部方向,空间位置,即将到来的运动或精神空间变换。通常,这些潜在变量是实验者无法直接访问的内部构造。在这里,我们提出了一个新的概率潜在变量模型,以同时识别潜在状态以及每个神经元以无监督的方式贡献其表示的方式。与以前假设欧几里得潜在空间的模型相反,我们接受了一个事实,即潜在状态通常属于对称歧管,例如各个维度的球体,托里或旋转组。因此,我们提出了歧管高斯过程潜在变量模型(MGPLVM),其中神经反应来自(i)(i)在特定歧管上的共享潜在变量,以及(ii)一组非参数调谐曲线,确定每个神经元如何对表示表示。具有不同拓扑模型的跨验证比较可以用于区分候选歧管,而变异推理可以量化不确定性。我们证明了该方法对几个合成数据集的有效性,以及来自果蝇椭圆体体的钙记录和来自小鼠前丘脑丘脑核的细胞外记录的有效性。已知这些电路都可以编码头方向,MGPLVM正确地从代表单个角变量的神经种群中恢复了预期的环拓扑。

A common problem in neuroscience is to elucidate the collective neural representations of behaviorally important variables such as head direction, spatial location, upcoming movements, or mental spatial transformations. Often, these latent variables are internal constructs not directly accessible to the experimenter. Here, we propose a new probabilistic latent variable model to simultaneously identify the latent state and the way each neuron contributes to its representation in an unsupervised way. In contrast to previous models which assume Euclidean latent spaces, we embrace the fact that latent states often belong to symmetric manifolds such as spheres, tori, or rotation groups of various dimensions. We therefore propose the manifold Gaussian process latent variable model (mGPLVM), where neural responses arise from (i) a shared latent variable living on a specific manifold, and (ii) a set of non-parametric tuning curves determining how each neuron contributes to the representation. Cross-validated comparisons of models with different topologies can be used to distinguish between candidate manifolds, and variational inference enables quantification of uncertainty. We demonstrate the validity of the approach on several synthetic datasets, as well as on calcium recordings from the ellipsoid body of Drosophila melanogaster and extracellular recordings from the mouse anterodorsal thalamic nucleus. These circuits are both known to encode head direction, and mGPLVM correctly recovers the ring topology expected from neural populations representing a single angular variable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源