论文标题

使用动态游戏和停止状态安全的路线计划

Secure Route Planning Using Dynamic Games with Stopping States

论文作者

Banik, Sandeep, Bopardikar, Shaunak D.

论文摘要

我们考虑了在路线图上定义的经典运动计划问题,在该路线图中,车辆试图在攻击者存在的情况下找到从源到目的地的最佳路径,该路径可以通过路线图的任何边缘发动攻击。车辆(防守者)有能力打开/关闭对策,如果攻击同时发生,可以检测并永久禁用该攻击。我们使用同时​​零和动态游戏(边缘游戏)的框架沿EN Edge行驶的问题建模,并且在攻击者和后卫之间发挥了停止状态。我们表征了边缘游戏的NASH Equiliria,并为每个播放器提供两个动作的封闭形式表达式。我们进一步提供了边缘游戏的值的分析和近似表达,并表征了其随阶段数量而生长的条件。我们研究了NASH平衡对使用对策的(i)成本,(ii)运动成本和(iii)禁用攻击的好处的敏感性。边缘游戏的解决方案用于制定和求解被称为元游戏的安全计划问题。我们使用边缘成本作为相应边缘游戏的解决方案将问题转换为最短的路径问题,从而设计了有效的启发式方法。我们通过一些有见地的模拟来说明我们的发现。

We consider the classic motion planning problem defined over a roadmap in which a vehicle seeks to find an optimal path from a source to a destination in presence of an attacker who can launch attacks on the vehicle over any edge of the roadmap. The vehicle (defender) has the capability to switch on/off a countermeasure that can detect and permanently disable the attack if it occurs concurrently. We model the problem of traveling along en edge using the framework of a simultaneous zero-sum dynamic game (edge-game) with a stopping state played between an attacker and defender. We characterize the Nash equiliria of an edge-game and provide closed form expressions for two actions per player. We further provide an analytic and approximate expression on the value of an edge-game and characterize conditions under which it grows sub-linearly with the number of stages. We study the sensitivity of Nash equilibrium to the (i) cost of using the countermeasure, (ii) cost of motion and (iii) benefit of disabling the attack. The solution of an edge-game is used to formulate and solve for the secure planning problem known as a meta-game. We design an efficient heuristic by converting the problem to a shortest path problem using the edge cost as the solution of corresponding edge-games. We illustrate our findings through several insightful simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源