论文标题
多模式指纹表现攻击检测:在新数据集上的评估
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset
论文作者
论文摘要
由于攻击准备技术的持续发展,指纹表现攻击检测正在成为一个越来越具有挑战性的问题,该技术产生了逼真的伪造指纹表现。在这项工作中,我们不依靠在社区中广泛使用的遗产指纹图像,而是研究了多种最近引入的感应方式的实用性。我们的研究涵盖了使用短波式红外,近红外和激光照明的前刷成像。并使用近红外光进行反刷成像。为了研究这些非常规的感应方式的有效性及其融合效果检测,我们使用完全卷积的深神经网络框架进行了全面的分析。我们的评估比较了新的感应方式与我们的收藏之一以及公共Livdet2015数据集的旧数据的不同组合,在大多数情况下显示了新的感应方式的优越性。它还涵盖了已知和未知攻击的案例,以及数据内和数据库间评估的案例。我们的结果表明,我们的方法的力量源于捕获的数据的性质,而不是使用的分类框架,这证明了基于硬件(或混合)解决方案的额外费用。我们计划公开发布我们的数据集集合之一。
Fingerprint presentation attack detection is becoming an increasingly challenging problem due to the continuous advancement of attack preparation techniques, which generate realistic-looking fake fingerprint presentations. In this work, rather than relying on legacy fingerprint images, which are widely used in the community, we study the usefulness of multiple recently introduced sensing modalities. Our study covers front-illumination imaging using short-wave-infrared, near-infrared, and laser illumination; and back-illumination imaging using near-infrared light. Toward studying the effectiveness of each of these unconventional sensing modalities and their fusion for liveness detection, we conducted a comprehensive analysis using a fully convolutional deep neural network framework. Our evaluation compares different combination of the new sensing modalities to legacy data from one of our collections as well as the public LivDet2015 dataset, showing the superiority of the new sensing modalities in most cases. It also covers the cases of known and unknown attacks and the cases of intra-dataset and inter-dataset evaluations. Our results indicate that the power of our approach stems from the nature of the captured data rather than the employed classification framework, which justifies the extra cost for hardware-based (or hybrid) solutions. We plan to publicly release one of our dataset collections.