论文标题
交换性D-Torsion K理论及其应用
Commutative d-Torsion K-Theory and Its Applications
论文作者
论文摘要
交换性$ d $ torsion $ k $ - 理论是拓扑$ k $的一种变体 - 由通勤订单矩阵构建的订单矩阵划分$ d $。这些矩阵似乎是线性约束系统的解决方案,这些解决方案在量子上下文的研究以及对量子信息理论促进的操作者理论问题的应用中发挥作用。使用稳定同型理论的方法,我们将交换性$ d $ torsion $ k $ - 理论修改为同一个学理论,可用于研究线性约束系统的操作方解决方案。这提供了稳定同义理论和量子信息理论之间的有趣联系。
Commutative $d$-torsion $K$-theory is a variant of topological $K$-theory constructed from commuting unitary matrices of order dividing $d$. Such matrices appear as solutions of linear constraint systems that play a role in the study of quantum contextuality and in applications to operator-theoretic problems motivated by quantum information theory. Using methods from stable homotopy theory we modify commutative $d$-torsion $K$-theory into a cohomology theory which can be used for studying operator solutions of linear constraint systems. This provides an interesting connection between stable homotopy theory and quantum information theory.