论文标题

零周期和组成猜想的无限中心问题

Infinitesimal Center Problem on zero cycles and the composition conjecture

论文作者

Álvarez, A., Bravo, J. L., Christopher, C., Mardešić, P.

论文摘要

我们研究了平面中经典无限中心问题的类似物,但对于零周期。我们在此上下文中定义位移函数,并证明当变形具有组成因子时,它在且仅当它相同。也就是说,我们证明,与零周期上的切向中心问题相比,这里的组成猜想是正确的。最后,我们举例说明了结果的应用。

We study the analogue of the classical infinitesimal center problem in the plane, but for zero cycles. We define the displacement function in this context and prove that it is identically zero if and only if the deformation has a composition factor. That is, we prove that here the composition conjecture is true, in contrast with the tangential center problem on zero cycles. Finally, we give examples of applications of our results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源