论文标题
拉紧的叶子,左订购和伪-Anosov映射Tori
Taut foliations, left-orders, and pseudo-Anosov mapping tori
论文作者
论文摘要
对于大型的三个含量的三个曼属,我们通过保留同态形态的方向来构建$π_1(m)$的动作,以捕获叶子的横向几何形状。这一动作与瑟斯顿的普遍圈子有关。应用包括图八节上每个非平凡手术的基本组的左定订单。我们的技术还适用于至少2598个歧管,代表了小型闭合双曲线3个脉冲的霍奇森 - 怀克斯人口普查中44.7%的非L空间合理同源球。
For a large class of 3-manifolds with taut foliations, we construct an action of $π_1(M)$ on $\mathbb{R}$ by orientation preserving homeomorphisms which captures the transverse geometry of the leaves. This action is complementary to Thurston's universal circle. Applications include the left-orderability of the fundamental groups of every non-trivial surgery on the figure eight knot. Our techniques also apply to at least 2598 manifolds representing 44.7% of the non-L-space rational homology spheres in the Hodgson-Weeks census of small closed hyperbolic 3-manifolds.