论文标题

深层外源性和内源性影响组合,用于社会聊天强度预测

Deep Exogenous and Endogenous Influence Combination for Social Chatter Intensity Prediction

论文作者

Dutta, Subhabrata, Masud, Sarah, Chakrabarti, Soumen, Chakraborty, Tanmoy

论文摘要

在社交媒体上对用户参与动态进行建模具有引人注目的应用程序,以实现用户培训和政治话语挖掘。大多数现有的方法在很大程度上取决于对基础用户网络的知识。但是,在缺乏任何可靠的社交网络的平台上进行了大量讨论,或者仅部分揭示了用户之间的关系(reddit,stackoverflow)。许多方法需要在一段时间内观察讨论,然后才能做出有用的预测。在实时流媒体场景中,观察成本。最后,大多数模型不会捕获外源性事件(例如外部发表的新闻文章)和网络内效应(例如Reddit上的后续讨论)之间的复杂相互作用,以确定参与水平。 为了解决上述三个限制,我们提出了一个新颖的框架Chatternet,据我们所知,它是第一个可以在不考虑基础用户网络的情况下建模和预测用户参与度的第一个。给定时间戳新闻文章和讨论的流,任务是在短时间内观察流的流,然后预测chat不休:在地平线之后指定期间的讨论量。 Chatternet使用新颖的时间不断发展的经常性网络体系结构从新闻和讨论中处理文本,该网络架构在新闻和讨论中都捕获了时间属性,以及新闻对讨论的影响。我们使用长达两个月的Reddit讨论语料库以及来自Common Crone的同时的在线新闻文章进行了广泛的实验报告。 Chatternet除了最近的最新参与预测模型外,都显示出可观的改进。控制观察和预测窗口的详细研究,超过43个不同的子列表,可产生进一步的有用见解。

Modeling user engagement dynamics on social media has compelling applications in user-persona detection and political discourse mining. Most existing approaches depend heavily on knowledge of the underlying user network. However, a large number of discussions happen on platforms that either lack any reliable social network or reveal only partially the inter-user ties (Reddit, Stackoverflow). Many approaches require observing a discussion for some considerable period before they can make useful predictions. In real-time streaming scenarios, observations incur costs. Lastly, most models do not capture complex interactions between exogenous events (such as news articles published externally) and in-network effects (such as follow-up discussions on Reddit) to determine engagement levels. To address the three limitations noted above, we propose a novel framework, ChatterNet, which, to our knowledge, is the first that can model and predict user engagement without considering the underlying user network. Given streams of timestamped news articles and discussions, the task is to observe the streams for a short period leading up to a time horizon, then predict chatter: the volume of discussions through a specified period after the horizon. ChatterNet processes text from news and discussions using a novel time-evolving recurrent network architecture that captures both temporal properties within news and discussions, as well as the influence of news on discussions. We report on extensive experiments using a two-month-long discussion corpus of Reddit, and a contemporaneous corpus of online news articles from the Common Crawl. ChatterNet shows considerable improvements beyond recent state-of-the-art models of engagement prediction. Detailed studies controlling observation and prediction windows, over 43 different subreddits, yield further useful insights.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源