论文标题

通用分解代数代表内态性

Universal Decomposition Algebras Represent Endomorphisms

论文作者

Behzad, Ommolbanin, Nejad, Abbas Nasrollah

论文摘要

本文的目的是提供对两个元多项式$ r $之一的产品的通用分解代数的明确描述,作为$ n \ times n $ n $矩阵的lie代数$ r $之一。这与Lie代数$ gl_ \ infty $的玻色粒顶点表示:Jimbo,Kashiwara和Miwa。

The goal of this paper is to supply an explicit description of the universal decomposition algebra of the generic polynomial of degree $n$ into the product of two monic polynomials, one of degree $r$, as a representation of Lie algebras of $n\times n$ matrices with polynomial entries. This is related with the bosonic vertex representation of the Lie algebra $gl_\infty$ due to Date, Jimbo, Kashiwara and Miwa.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源