论文标题
通用分解代数代表内态性
Universal Decomposition Algebras Represent Endomorphisms
论文作者
论文摘要
本文的目的是提供对两个元多项式$ r $之一的产品的通用分解代数的明确描述,作为$ n \ times n $ n $矩阵的lie代数$ r $之一。这与Lie代数$ gl_ \ infty $的玻色粒顶点表示:Jimbo,Kashiwara和Miwa。
The goal of this paper is to supply an explicit description of the universal decomposition algebra of the generic polynomial of degree $n$ into the product of two monic polynomials, one of degree $r$, as a representation of Lie algebras of $n\times n$ matrices with polynomial entries. This is related with the bosonic vertex representation of the Lie algebra $gl_\infty$ due to Date, Jimbo, Kashiwara and Miwa.