论文标题
按顺序和最大元素顺序表征某些交替组
Characterization of some alternating groups by order and the largest element order
论文作者
论文摘要
有限组$ g $的Prime图(或Gruenberg-Kegel图)是一个熟悉的图。首先,我们研究了具有不完整质数图的有限基团的结构。然后,我们证明每个交替的组$ a_ {n} $,其中$ n \ leq20 $或$ n \ in \ {23,24 \} $由其订单和最大元素顺序确定。
The prime graph (or Gruenberg-Kegel graph) of a finite group $G$ is a familiar graph. In this paper first, we investigate the structure of the finite groups with a non-complete prime graph. Then we prove that every alternating group $A_{n}$, where $n\leq20$ or $n\in\{23,24\}$ is determined by its order and its largest element order.