论文标题
使用非符号神经网络的关系推理和概括
Relational reasoning and generalization using non-symbolic neural networks
论文作者
论文摘要
平等(身份)的概念简单且无处不在,使其成为有关支持抽象关系推理的表示形式的更广泛问题的关键案例研究。先前的工作表明,神经网络不是人类关系推理的合适模型,因为它们无法代表数学身份,这是平等的最基本形式。我们重新审视这个问题。在我们的实验中,我们使用在单独的任务上鉴定的任意表示和表示形式来评估平等的样本概括,以使它们与结构相关。我们发现神经网络能够学习(1)基本的平等(数学身份),(2)仅具有正面训练实例的顺序平等问题(学习ABA模式序列),以及(3)仅具有基本的平等训练实例的复杂,分层平等问题(“零击”一般化)。在后一种情况下,我们的模型执行了先前工作中提出的任务,以划定人类独特的象征能力。这些结果表明,符号推理的基本方面可以从数据驱动的非符号学习过程中出现。
The notion of equality (identity) is simple and ubiquitous, making it a key case study for broader questions about the representations supporting abstract relational reasoning. Previous work suggested that neural networks were not suitable models of human relational reasoning because they could not represent mathematically identity, the most basic form of equality. We revisit this question. In our experiments, we assess out-of-sample generalization of equality using both arbitrary representations and representations that have been pretrained on separate tasks to imbue them with structure. We find neural networks are able to learn (1) basic equality (mathematical identity), (2) sequential equality problems (learning ABA-patterned sequences) with only positive training instances, and (3) a complex, hierarchical equality problem with only basic equality training instances ("zero-shot'" generalization). In the two latter cases, our models perform tasks proposed in previous work to demarcate human-unique symbolic abilities. These results suggest that essential aspects of symbolic reasoning can emerge from data-driven, non-symbolic learning processes.