论文标题

贝尔曼方程将路径计划,避免障碍和不变设置估算的应用概括

A Generalization of Bellman's Equation with Application to Path Planning, Obstacle Avoidance and Invariant Set Estimation

论文作者

Jones, Morgan, Peet, Matthew

论文摘要

标准动态编程(DP)公式可用于用可分离的目标函数解决多阶段优化问题(MSOP)。在本文中,我们考虑了一个更大的MSOP类,具有单调向后可分离的目标函数。可分离的函数是单调向后分离函数的特殊情况。我们提出了一种必要且充分的条件,利用Bellman方程的概括,用于具有单调向后可分离的成本函数的MSOP解决方案,是最佳的。此外,我们表明该提出的条件可用于有效计算两个重要的MSOP的最佳解决方案。 Dubin的汽车具有避免障碍物的最佳路径,以及用于离散时间系统的最大不变设置。

The standard Dynamic Programming (DP) formulation can be used to solve Multi-Stage Optimization Problems (MSOP's) with additively separable objective functions. In this paper we consider a larger class of MSOP's with monotonically backward separable objective functions; additively separable functions being a special case of monotonically backward separable functions. We propose a necessary and sufficient condition, utilizing a generalization of Bellman's equation, for a solution of a MSOP, with a monotonically backward separable cost function, to be optimal. Moreover, we show that this proposed condition can be used to efficiently compute optimal solutions for two important MSOP's; the optimal path for Dubin's car with obstacle avoidance, and the maximal invariant set for discrete time systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源