论文标题
双曲神经网络++
Hyperbolic Neural Networks++
论文作者
论文摘要
双曲线空间由于其指数量的增长而具有嵌入树结构的能力,但最近已应用于机器学习,以更好地捕获数据的层次结构性质。在这项研究中,我们将神经网络的基本组成部分概括为单个双曲线几何模型,即庞加莱球模型。这种新颖的方法构建了多项式逻辑回归,完全连接的层,卷积层和注意力机制在统一的数学解释下,而没有增加参数。实验表明,与常规双曲分量相比,我们方法的出色参数效率以及欧几里得对应物的稳定性和表现优于稳定性和表现优于性。
Hyperbolic spaces, which have the capacity to embed tree structures without distortion owing to their exponential volume growth, have recently been applied to machine learning to better capture the hierarchical nature of data. In this study, we generalize the fundamental components of neural networks in a single hyperbolic geometry model, namely, the Poincaré ball model. This novel methodology constructs a multinomial logistic regression, fully-connected layers, convolutional layers, and attention mechanisms under a unified mathematical interpretation, without increasing the parameters. Experiments show the superior parameter efficiency of our methods compared to conventional hyperbolic components, and stability and outperformance over their Euclidean counterparts.