论文标题

代数地面真理推断:通过AI算法对样本错误的非参数估算

Algebraic Ground Truth Inference: Non-Parametric Estimation of Sample Errors by AI Algorithms

论文作者

Corrada-Emmanuel, Andrés, Pantridge, Edward, Zahrebelski, Edward, Chaganti, Aditya, Simeonov, Simeon

论文摘要

二进制分类广泛用于ML生产系统中。在约束事件空间中监视分类器是众所周知的。但是,现实世界的生产系统通常缺乏这些方法所需的基础真相。隐私问题还可能要求评估分类器所需的基础真理。在这些自主设置中,性能的非参数估计器是一个有吸引力的解决方案。他们不需要关于分类器如何在任何给定样本中犯错误的理论模型。他们只是估计工业或机器人数据流的样本中有多少个错误。我们为弱二进制分类器集合的样品误差构建了一个这种非参数估计器。我们的方法使用代数几何形状重新制定二元分类器合奏作为确切的多项式系统的自我评估问题。然后,多项式公式可以用来证明 - 作为代数几何算法 - 没有对自我评估问题的一般解决方案。但是,在工程环境使分类器接近独立错误的设置中,可以使用特定的解决方案。该方法的实际实用性在在线广告活动中的真实数据集中说明了,并示例了共同的分类基准样本。我们拥有地面真理的实验中的精度估计器比一百个一部分要好。在线广告活动数据(我们没有地面真相数据)通过内部一致性方法进行了验证,我们的有效性我们猜测为代数几何定理。我们称这种方法 - 代数基础真理推断。

Binary classification is widely used in ML production systems. Monitoring classifiers in a constrained event space is well known. However, real world production systems often lack the ground truth these methods require. Privacy concerns may also require that the ground truth needed to evaluate the classifiers cannot be made available. In these autonomous settings, non-parametric estimators of performance are an attractive solution. They do not require theoretical models about how the classifiers made errors in any given sample. They just estimate how many errors there are in a sample of an industrial or robotic datastream. We construct one such non-parametric estimator of the sample errors for an ensemble of weak binary classifiers. Our approach uses algebraic geometry to reformulate the self-assessment problem for ensembles of binary classifiers as an exact polynomial system. The polynomial formulation can then be used to prove - as an algebraic geometry algorithm - that no general solution to the self-assessment problem is possible. However, specific solutions are possible in settings where the engineering context puts the classifiers close to independent errors. The practical utility of the method is illustrated on a real-world dataset from an online advertising campaign and a sample of common classification benchmarks. The accuracy estimators in the experiments where we have ground truth are better than one part in a hundred. The online advertising campaign data, where we do not have ground truth data, is verified by an internal consistency approach whose validity we conjecture as an algebraic geometry theorem. We call this approach - algebraic ground truth inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源