论文标题

Nesterov在非convex优化中的加速方法的注释:弱估计序列方法

A Note on Nesterov's Accelerated Method in Nonconvex Optimization: a Weak Estimate Sequence Approach

论文作者

Bu, Jingjing, Mesbahi, Mehran

论文摘要

我们提出了一种适用于Nesterov的最佳一阶方法的加速梯度下降算法的变体,用于虚弱的Quasi-Convex和弱Quasi-trong-trong-trong-convex函数。我们表明,通过调整所谓的估计序列方法,衍生算法可实现弱Quasi-Convex和弱Quasi-trong-trong-rong-trong-Convex的最佳收敛速率,以甲骨文的复杂性。特别是,对于具有Lipschitz连续梯度的弱Quasi-Convex函数,我们需要$ O(\ frac {1} {\ sqrt {\ sqrt {\ varepsilon}})$ iterations $ iterations $ iterations才能获取$ \ varepsilon $ -sondolution $ -SONOLUTION;对于虚弱的Quasi-Strongly-convex函数,迭代复杂度为$ o \ left(\ ln \ left(\ frac {1} {\ varepsilon} \ right)\ right)$。此外,我们讨论了这些算法对线性二次最佳控制问题的含义。

We present a variant of accelerated gradient descent algorithms, adapted from Nesterov's optimal first-order methods, for weakly-quasi-convex and weakly-quasi-strongly-convex functions. We show that by tweaking the so-called estimate sequence method, the derived algorithm achieves optimal convergence rate for weakly-quasi-convex and weakly-quasi-strongly-convex in terms of oracle complexity. In particular, for a weakly-quasi-convex function with Lipschitz continuous gradient, we require $O(\frac{1}{\sqrt{\varepsilon}})$ iterations to acquire an $\varepsilon$-solution; for weakly-quasi-strongly-convex functions, the iteration complexity is $O\left( \ln\left(\frac{1}{\varepsilon}\right) \right)$. Furthermore, we discuss the implications of these algorithms for linear quadratic optimal control problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源