论文标题

关于平滑的杀戮场的存在,并具有紧凑的Cauchy Horizo​​n

On the existence of Killing fields in smooth spacetimes with a compact Cauchy horizon

论文作者

Reiris, Martín, Bustamante, Ignacio

论文摘要

我们证明,在平滑的真空时期中,紧凑的非分类库奇地平线的表面重力可以归一化为非零常数。该结果加上Oliver Petersen和IstvánRácz的最新结果,最终证明了Isenberg-Moncrief猜想在平滑的可区分性类别中杀死田地的存在。根据强大的宇宙审查制度的猜想,众所周知的推论是,紧凑的cauchy horizo​​ns的存在是一种非类似现象。尽管我们在3+1中工作,但结果在任何n+1维度中都是有效的线。

We prove that the surface gravity of a compact non-degenerate Cauchy horizon in a smooth vacuum spacetime, can be normalized to a non-zero constant. This result, combined with a recent result by Oliver Petersen and István Rácz, end up proving the Isenberg-Moncrief conjecture on the existence of Killing fields, in the smooth differentiability class. The well known corollary of this, in accordance with the strong cosmic censorship conjecture, is that the presence of compact Cauchy horizons is a non-generic phenomenon. Though we work in 3+1, the result is valid line by line in any n+1-dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源