论文标题
Musielak-Orlicz类型空间中杰克逊型的不平等和宽度
Jackson-type inequalities and widths of functional classes in the Musielak-Orlicz type spaces
论文作者
论文摘要
在Musielak-orlicz类型空间中,$ {\ Mathcal S} _ {\ bf m} $,根据功能的最佳近似值和其平稳性的平均值的平均值,获得了精确的杰克逊型不平等。 Kolmogorov,Bernstein,Linear和Poxtive Widths在$ {\ Mathcal s} _ {\ bf m} $中的值是针对平滑度广义模量的平均值定义的定期函数类别的。
In the Musielak-Orlicz type spaces ${\mathcal S}_{\bf M}$, exact Jackson-type inequalities are obtained in terms of best approximations of functions and the averaged values of their generalized moduli of smoothness. The values of Kolmogorov, Bernstein, linear, and projective widths in ${\mathcal S}_{\bf M}$ are found for classes of periodic functions defined by certain conditions on the averaged values of the generalized moduli of smoothness.