论文标题
干净的线性时间中的亚dublululiular最大化
Submodular Maximization in Clean Linear Time
论文作者
论文摘要
在本文中,我们提供了第一种确定性算法,该算法可在基数(大小)约束下达到$ 1-1/e $ $ $ $ $ $的近似保证,同时进行许多查询,这些查询仅与地面设置$ n $的大小线性地缩放。为了补充我们的结果,我们还显示了强大的信息理论下限。更具体地说,我们表明,当允许解决方案的最大基数是恒定的时,没有算法进行亚线性数量的函数评估可以保证任何恒定近似比。此外,当约束允许选择接地组的恒定部分时,我们表明,任何产生少于$ω(n/\ log(n))$ function评估的算法不能比仅输出合适大小的接地集的均匀随机子集的算法更好。然后,我们为更通用的背包约束提供了确定性算法的变体,这是第一个实现此约束的线性时间算法,可实现$ 1/2 $ - APPROXIMATION保证。最后,我们将结果扩展到最大化单调下调函数的一般情况,但要受到$ p $ set系统和多个背包约束的交集。我们广泛评估了在多个现实生活机器学习应用程序上的算法的性能,包括电影推荐,位置摘要,Twitter文本摘要和视频摘要。
In this paper, we provide the first deterministic algorithm that achieves the tight $1-1/e$ approximation guarantee for submodular maximization under a cardinality (size) constraint while making a number of queries that scales only linearly with the size of the ground set $n$. To complement our result, we also show strong information-theoretic lower bounds. More specifically, we show that when the maximum cardinality allowed for a solution is constant, no algorithm making a sub-linear number of function evaluations can guarantee any constant approximation ratio. Furthermore, when the constraint allows the selection of a constant fraction of the ground set, we show that any algorithm making fewer than $Ω(n/\log(n))$ function evaluations cannot perform better than an algorithm that simply outputs a uniformly random subset of the ground set of the right size. We then provide a variant of our deterministic algorithm for the more general knapsack constraint, which is the first linear-time algorithm that achieves $1/2$-approximation guarantee for this constraint. Finally, we extend our results to the general case of maximizing a monotone submodular function subject to the intersection of a $p$-set system and multiple knapsack constraints. We extensively evaluate the performance of our algorithms on multiple real-life machine learning applications, including movie recommendation, location summarization, twitter text summarization and video summarization.