论文标题

使用深度加固学习,避免了无人层面车辆的Colreg符合碰撞避免碰撞

COLREG-Compliant Collision Avoidance for Unmanned Surface Vehicle using Deep Reinforcement Learning

论文作者

Meyer, Eivind, Heiberg, Amalie, Rasheed, Adil, San, Omer

论文摘要

跟随和避免碰撞的路径,无论是无人的地表船还是其他自动驾驶汽车,都是机器人技术中的两个基本指导问题。数十年来,他们一直在接受学术研究,从而导致了许多建议的方法。但是,它们主要被视为单独的问题,并且通常依赖于具有参数的非线性第一原理模型,这些模型只能通过实验确定。近年来,深度强化学习(DRL)的兴起提出了一种替代方法:通过基于反复试验的方法从头开始对最佳指导政策的端到端学习。在本文中,我们探讨了近端政策优化(PPO)的潜力,这是一种DRL算法,在连续控制任务上表现出最先进的性能,当时应用于控制符合性的符合性的符合性的符合良好的途径的双重目标问题,以遵循与其他船只相同的驾驶过程,以遵循与其他良好的路径相同的方法。基于挪威海入口Trondheim Fjord的高保真高程和AIS跟踪数据,我们评估了受过训练的代理商在具有挑战性的,动态的现实世界中的表现,代理商的最终成功取决于其在处理非统一的海洋领域的能力,同时处理了挑战,但现实的容器,但现实的船只却是现实的。

Path Following and Collision Avoidance, be it for unmanned surface vessels or other autonomous vehicles, are two fundamental guidance problems in robotics. For many decades, they have been subject to academic study, leading to a vast number of proposed approaches. However, they have mostly been treated as separate problems, and have typically relied on non-linear first-principles models with parameters that can only be determined experimentally. The rise of Deep Reinforcement Learning (DRL) in recent years suggests an alternative approach: end-to-end learning of the optimal guidance policy from scratch by means of a trial-and-error based approach. In this article, we explore the potential of Proximal Policy Optimization (PPO), a DRL algorithm with demonstrated state-of-the-art performance on Continuous Control tasks, when applied to the dual-objective problem of controlling an underactuated Autonomous Surface Vehicle in a COLREGs compliant manner such that it follows an a priori known desired path while avoiding collisions with other vessels along the way. Based on high-fidelity elevation and AIS tracking data from the Trondheim Fjord, an inlet of the Norwegian sea, we evaluate the trained agent's performance in challenging, dynamic real-world scenarios where the ultimate success of the agent rests upon its ability to navigate non-uniform marine terrain while handling challenging, but realistic vessel encounters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源