论文标题

利用预测的力量:潜伏敏感的移动边缘计算的预测服务放置

Leveraging the Power of Prediction: Predictive Service Placement for Latency-Sensitive Mobile Edge Computing

论文作者

Ma, Huirong, Zhou, Zhi, Chen, Xu

论文摘要

移动边缘计算(MEC)正在出现,以支持移动网络边缘的延迟敏感的5G应用程序。当用户在多个MEC节点之间不正当移动时,如何动态迁移其服务以维持服务性能(即用户感知的延迟)的挑战。但是,频繁的服务迁移可以显着增加运营成本,从而导致提高绩效与降低成本之间的冲突。为了解决这些错误的目标,本文研究了在长期成本预算的限制下移动边缘服务放置的性能优化。这是具有挑战性的,因为预算涉及未来的不确定信息(例如用户移动性)。为了克服这一困难,我们致力于利用预测的力量,并通过预测的近乎预测信息进行预测服务。通过使用两段尺度的Lyapunov优化方法,我们提出了T-Slot预测服务放置(PSP)算法,以基于基于基于框架的设计的用户移动性进行预测。我们从理论上的成本延迟权衡方面表征了PSP的性能范围。此外,我们为在名为PSP-WU的每个框架中的队列提出了一种新的重量调整方案,以利用历史队列信息,这大大降低了队列的长度,同时提高了用户感知的延迟的质量。严格的理论分析和使用现实数据痕迹进行的广泛评估证明了所提出的预测方案的出色性能。

Mobile edge computing (MEC) is emerging to support delay-sensitive 5G applications at the edge of mobile networks. When a user moves erratically among multiple MEC nodes, the challenge of how to dynamically migrate its service to maintain service performance (i.e., user-perceived latency) arises. However, frequent service migration can significantly increase operational cost, incurring the conflict between improving performance and reducing cost. To address these mis-aligned objectives, this paper studies the performance optimization of mobile edge service placement under the constraint of long-term cost budget. It is challenging because the budget involves the future uncertain information (e.g., user mobility). To overcome this difficulty, we devote to leveraging the power of prediction and advocate predictive service placement with predicted near-future information. By using two-timescale Lyapunov optimization method, we propose a T-slot predictive service placement (PSP) algorithm to incorporate the prediction of user mobility based on a frame-based design. We characterize the performance bounds of PSP in terms of cost-delay trade-off theoretically. Furthermore, we propose a new weight adjustment scheme for the queue in each frame named PSP-WU to exploit the historical queue information, which greatly reduces the length of queue while improving the quality of user-perceived latency. Rigorous theoretical analysis and extensive evaluations using realistic data traces demonstrate the superior performance of the proposed predictive schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源