论文标题

6G无线通信网络的视觉辅助动态阻塞预测

Vision-Aided Dynamic Blockage Prediction for 6G Wireless Communication Networks

论文作者

Charan, Gouranga, Alrabeiah, Muhammad, Alkhateeb, Ahmed

论文摘要

释放毫米波和亚terahertz无线通信网络的全部潜力取决于实现前所未有的低延迟和高可靠性要求。满足这些要求的挑战部分在于信号在毫米波和亚terahertz频率范围内的敏感性。应对这一挑战的一种有希望的方法是帮助无线网络使用机器学习来增强其周围的感觉。本文试图通过使用深度学习和计算机视觉来做到这一点。它提出了一个新颖的解决方案,该解决方案主动预测\ textit {dynamic}链接阻塞。更具体地说,它开发了一个深层的神经网络体系结构,该架构从观察到的RGB图像和波束成形向量的序列中学习,如何预测可能的未来链接阻塞。在公开可用的数据集上评估了所提出的体系结构,该数据集代表具有多个移动用户和阻塞的综合动态通信方案。它在86 \%附近的链接阻滞预测准确性得分,而在不使用视觉数据的情况下,这种性能不太可能匹配。

Unlocking the full potential of millimeter-wave and sub-terahertz wireless communication networks hinges on realizing unprecedented low-latency and high-reliability requirements. The challenge in meeting those requirements lies partly in the sensitivity of signals in the millimeter-wave and sub-terahertz frequency ranges to blockages. One promising way to tackle that challenge is to help a wireless network develop a sense of its surrounding using machine learning. This paper attempts to do that by utilizing deep learning and computer vision. It proposes a novel solution that proactively predicts \textit{dynamic} link blockages. More specifically, it develops a deep neural network architecture that learns from observed sequences of RGB images and beamforming vectors how to predict possible future link blockages. The proposed architecture is evaluated on a publicly available dataset that represents a synthetic dynamic communication scenario with multiple moving users and blockages. It scores a link-blockage prediction accuracy in the neighborhood of 86\%, a performance that is unlikely to be matched without utilizing visual data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源