论文标题

具有质量效应的生物物理脑肿瘤生长模型的多型校准

Multiatlas Calibration of Biophysical Brain Tumor Growth Models with Mass Effect

论文作者

Subramanian, Shashank, Scheufele, Klaudius, Himthani, Naveen, Biros, George

论文摘要

我们提出了一种3D全自动方法,用于校准胶质母细胞瘤(GBM)生长的部分微分方程(PDE)模型,并具有质量效应,由于肿瘤而导致的脑组织变形。我们从单个多参数磁共振成像(MPMRI)患者扫描中量化质量效应,肿瘤增殖,肿瘤迁移和局部肿瘤初始条件。 PDE是一种反应 - 添加扩散部分微分方程,并结合线性弹性方程,以捕获质量效应。众所周知,单扫描校准模型非常困难,因为癌前(健康的)脑解剖结构尚不清楚。为了解决这个固有的侵犯和条件不足的优化问题,我们引入了一种新型的反转方案,该方案使用多个大脑图书定酶作为健康的预科疗法患者大脑的代理,从而实现了可靠且可靠的参数估计。我们将我们的方法应用于代表通常在胶质母细胞瘤中观察到的异质空间景观的合成和临床数据集,以证明我们方法的有效性和性能。在综合数据中,我们报告了10 \%-20 \%范围内的校准误差(由于适应不良和解决方案方案)。在临床数据中,我们报告了与观察到的肿瘤和与质量效应的定性一致性的良好定量一致(我们没有地面真相)。我们的方法使用一组最小的参数,并提供肿瘤浸润和质量效应的全球和局部定量测量方法。

We present a 3D fully-automatic method for the calibration of partial differential equation (PDE) models of glioblastoma (GBM) growth with mass effect, the deformation of brain tissue due to the tumor. We quantify the mass effect, tumor proliferation, tumor migration, and the localized tumor initial condition from a single multiparameteric Magnetic Resonance Imaging (mpMRI) patient scan. The PDE is a reaction-advection-diffusion partial differential equation coupled with linear elasticity equations to capture mass effect. The single-scan calibration model is notoriously difficult because the precancerous (healthy) brain anatomy is unknown. To solve this inherently ill-posed and ill-conditioned optimization problem, we introduce a novel inversion scheme that uses multiple brain atlases as proxies for the healthy precancer patient brain resulting in robust and reliable parameter estimation. We apply our method on both synthetic and clinical datasets representative of the heterogeneous spatial landscape typically observed in glioblastomas to demonstrate the validity and performance of our methods. In the synthetic data, we report calibration errors (due to the ill-posedness and our solution scheme) in the 10\%-20\% range. In the clinical data, we report good quantitative agreement with the observed tumor and qualitative agreement with the mass effect (for which we do not have a ground truth). Our method uses a minimal set of parameters and provides both global and local quantitative measures of tumor infiltration and mass effect.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源