论文标题

酒精极化的非旋转机制

Non-rotational mechanism of polarization in alcohols

论文作者

Artemov, V. G., Ryzhov, A., Carlsen, E., Kapralov, P. O., Ouerdane, H.

论文摘要

化学极性控制电介质的各种机械,化学和热力学特性。已经对极性液体进行了充分的研究,但是基于其介电特性的基本机制尚未完全理解,因为遵循Debye的现象学方法的标准模型并不能解决量子效应,并且无法恰当地重现完整的DC-UP-UP-THZ光谱范围。在这里,使用一单胆汁醇的说明性情况,我们表明了极性质子的深隧道以及极性质子的分子间分离和极性液体中的“质子 - 孔”控制同一基础上其静态和动态介电性能。我们对不同(0.4-1.6 nm)分子长度的单次醇进行了系统的超单生(0-10 THZ)光谱实验,并表明分子物种的有限寿命和质子 - 孔相关长度是负责所有跨整个频段的介电响应的两个原理参数。我们的结果表明,量子非转旋力间机制驱动醇的极化,而分子极化的旋转机制起着次要作用,仅在亚terahertz区域中表现出来。

Chemical polarity governs various mechanical, chemical and thermodynamic properties of dielectrics. Polar liquids have been amply studied, yet the basic mechanisms underpinning their dielectric properties remain not fully understood, as standard models following Debye's phenomenological approach do not account for quantum effects and cannot aptly reproduce the full dc-up-to-THz spectral range. Here, using the illustrative case of monohydric alcohols, we show that deep tunneling and the consequent intermolecular separation of excess protons and "proton-holes" in the polar liquids govern their static and dynamic dielectric properties on the same footing. We performed systematic ultrabroadband (0-10 THz) spectroscopy experiments with monohydric alcohols of different (0.4-1.6 nm) molecular lengths, and show that the finite lifetime of molecular species, and the proton-hole correlation length are the two principle parameters responsible for the dielectric response of all the studied alcohols across the entire frequency range. Our results demonstrate that a quantum non-rotational intermolecular mechanism drives the polarization in alcohols while the rotational mechanism of molecular polarization plays a secondary role, manifesting itself in the sub-terahertz region only.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源