论文标题
M87和sgr a*成像的模拟与毫米空间天文台的近地轨道上的仿真
Simulations of M87 and Sgr A* Imaging with the Millimetron Space Observatory on near-Earth orbits
论文作者
论文摘要
超大质量黑洞阴影的高分辨率成像是验证在极端重力条件下一般相对性理论的直接方法。在毫米/亚毫米计的波长处的非常长的基线干涉法(VLBI)观测可以为位于SGR A*和M87中的超质量黑洞提供这种角度分辨率。 M87对事件地平线望远镜(EHT)最近对M87的观察结果显示了这种功能。 EHT的最大可获得空间分辨率受地球直径和大气相变化的限制。为了改善图像分辨率,需要更长的基线。放射性空间太空任务成功证明了太空地球VLBI的能力,基本线比地球直径大得多。 Millimetron是俄罗斯航天局的下一个太空任务,该任务将以毫米波长运行。天文台的名义轨道将位于太阳 - 地球系统的拉格朗日L2点附近。为了优化VLBI模式,我们考虑了可能使用近地球高椭圆轨道(HEO)的任务的第二阶段。在此贡献中,在关节毫米和EHT构型中,将一组近地轨道用于SGR A*和M87的合成空间vlbi观测值。用于SGR A*和M87黑洞环境的一般流行性磁水动力学模型(GRMHD)用于230 GHz的静态和动态成像模拟。地面和空格基线之间的比较表明,毫米和EHT的关节观察值显着改善了图像分辨率,并允许EHT+毫米元素在快速时间尺度上获得SGR A*探测动力学的快照图像。
High resolution imaging of supermassive black holes shadows is a direct way to verify the theory of general relativity at extreme gravity conditions. Very Long Baseline Interferometry (VLBI) observations at millimeter/sub-millimeter wavelengths can provide such angular resolution for supermassive black holes, located in Sgr A* and M87. Recent VLBI observations of M87 with the Event Horizon Telescope (EHT) has shown such capabilities. The maximum obtainable spatial resolution of EHT is limited by Earth diameter and atmospheric phase variations. In order to improve the image resolution longer baselines are required. Radioastron space mission has successfully demonstrated the capabilities of Space-Earth VLBI with baselines much larger than Earth diameter. Millimetron is a next space mission of the Russian Space Agency that will operate at millimeter wavelengths. Nominal orbit of the observatory will be located around Lagrangian L2 point of the Sun-Earth system. In order to optimize the VLBI mode, we consider a possible second stage of the mission that could use near-Earth high elliptical orbit (HEO). In this contribution a set of near-Earth orbits is used for the synthetic space-ground VLBI observations of Sgr A* and M87 in joint Millimetron and EHT configuration. General-relativistic magnetohydrodynamic models (GRMHD) for black hole environment of Sgr A* and M87 are used for static and dynamic imaging simulations at 230 GHz. A comparison preformed between ground and space-ground baselines demonstrates that joint observations with Millimetron and EHT significantly improve the image resolution and allow the EHT+Millimetron to obtain snapshot images of Sgr A* probing dynamics at fast timescales.