论文标题

riemannian流形的Matérn高斯流程

Matérn Gaussian processes on Riemannian manifolds

论文作者

Borovitskiy, Viacheslav, Terenin, Alexander, Mostowsky, Peter, Deisenroth, Marc Peter

论文摘要

高斯流程是学习未知功能的有效模型类别,尤其是在准确代表预测不确定性至关重要的环境中。受到物理科学的应用激励,广泛使用的高斯过程类别已被推广到建模函数,其域是riemannian歧管,通过重新表达上述过程作为随机部分微分方程的解决方案。在这项工作中,我们提出了通过Laplace-Beltrami操作员的光谱理论以完全建设性的方式计算这些过程的这些过程的技术,以完全建设性的方式来计算这些过程,从而使它们可以通过诸如诱导点方法等标准可扩展技术进行培训。我们还将概括从Matérn扩展到广泛使用的平方高斯过程。通过允许使用良好理解的技术对RiemannianMatérnGaussian流程进行培训,我们的工作使它们可以在迷你批次,在线和非混合设置中使用,并使它们更易于机器学习从业者访问。

Gaussian processes are an effective model class for learning unknown functions, particularly in settings where accurately representing predictive uncertainty is of key importance. Motivated by applications in the physical sciences, the widely-used Matérn class of Gaussian processes has recently been generalized to model functions whose domains are Riemannian manifolds, by re-expressing said processes as solutions of stochastic partial differential equations. In this work, we propose techniques for computing the kernels of these processes on compact Riemannian manifolds via spectral theory of the Laplace-Beltrami operator in a fully constructive manner, thereby allowing them to be trained via standard scalable techniques such as inducing point methods. We also extend the generalization from the Matérn to the widely-used squared exponential Gaussian process. By allowing Riemannian Matérn Gaussian processes to be trained using well-understood techniques, our work enables their use in mini-batch, online, and non-conjugate settings, and makes them more accessible to machine learning practitioners.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源