论文标题
色和集
Chromatic sumsets
论文作者
论文摘要
令$ \ mathbf {a} =(a_1,\ ldots,a_q)$是有限整数集的$ q $ - 总计。与非负整数的每个$ q $ -tuple相关联$ \ Mathbf {h} =(H_1,\ ldots,H_Q)$是线性形式$ \ Mathbf {H} \ CDOT \ CDOT \ CDOT \ CDOT \ MATHBF {A} = H_1 A_1 A_1 A_1 A_1 + \ cdots + \ cdots + H_QA_Q $。集合$(\ Mathbf {h} \ cdot \ mathbf {a})^{(t)} $由此集合的所有元素组成,至少包含$ t $表示。对于所有足够大的$ h_i $,计算集合$(\ Mathbf {H} \ CDOT \ MATHBF {A})^{(t)} $的结构。
Let $\mathbf{A} = (A_1,\ldots, A_q)$ be a $q$-tuple of finite sets of integers. Associated to every $q$-tuple of nonnegative integers $\mathbf{h} = (h_1,\ldots, h_q)$ is the linear form $\mathbf{h}\cdot \mathbf{A} = h_1 A_1 + \cdots + h_qA_q$. The set $(\mathbf{h}\cdot \mathbf{A} )^{(t)}$ consists of all elements of this sumset with at least $t$ representations. The structure of the set $(\mathbf{h}\cdot \mathbf{A} )^{(t)}$ is computed for all sufficiently large $h_i$.