论文标题

通过平方梯度最小化和混合构型的重新耦合,在密度功能理论上对自由基的核心水平光谱的准确预测

Accurate prediction of core-level spectra of radicals at density functional theory cost via square gradient minimization and recoupling of mixed configurations

论文作者

Hait, Diptarka, Haugen, Eric A., Yang, Zheyue, Oosterbaan, Katherine J., Leone, Stephen R., Head-Gordon, Martin

论文摘要

与传统的线性响应协议相比,州特异性轨道优化方法在预测核心水平光谱方面更为准确,但是由于其“变异崩溃”的风险降低到基础状态,它们的效用受到限制。我们采用了最近开发的方梯度最小化(SGM,J。Chem。理论计算。16,1699-1710,2020)算法可靠地避免避免变异性崩溃,并研究轨道优化密度功能理论(DFT)在预测第二个周期元素1S核心1S核心系统的有效性。发现几个密度函数(包括扫描,B3LYP和$ω$ b97x-d3)可以预测从可用的实验数据,可预测从核心到单一占用水平的激发能量到高精度($ \ le 0.3 $ ev rms误差)。然而,由于本质上具有多种配置,更高的激发状态更具挑战性。因此,我们提出了一条启发的途径,以自愿回收从DFT获得的单个决定符混合构型,以获得近似的双重态。该重新耦合方案用于预测Allyl激进的C K-EDGE光谱,Co $^+$的O K边缘光谱以及NO $ _2 $的N K-EDGE相对于实验的高精度,这表明使用这种核心级别的核心光谱进行了多个dumpereent conformations conforment conforment conforment conforment conforment conforment conforment conforment conforment conforment epentent epentent dft dft dft dft dft dft dft,unim-em-ccypl unim-unif unim-unim-unif unim-unim-cccd)。我们还介绍了从轨道优化的DFT计算核心兴奋状态的一般指南。

State-specific orbital optimized approaches are more accurate at predicting core-level spectra than traditional linear-response protocols, but their utility had been restricted on account of the risk of `variational collapse' down to the ground state. We employ the recently developed square gradient minimization (SGM, J. Chem. Theory Comput. 16, 1699-1710, 2020) algorithm to reliably avoid variational collapse and study the effectiveness of orbital optimized density functional theory (DFT) at predicting second period element 1s core-level spectra of open-shell systems. Several density functionals (including SCAN, B3LYP and $ω$B97X-D3) are found to predict excitation energies from the core to singly occupied levels to high accuracy ($\le 0.3$ eV RMS error), against available experimental data. Higher excited states are however more challenging by virtue of being intrinsically multiconfigurational. We thus present a CI inspired route to self-consistently recouple single determinant mixed configurations obtained from DFT, in order to obtain approximate doublet states. This recoupling scheme is used to predict the C K-edge spectra of the allyl radical, the O K-edge spectra of CO$^+$ and the N K-edge of NO$_2$ to high accuracy relative to experiment, indicating substantial promise in using this approach for computation of core-level spectra for doublet species (vs more traditional time dependent DFT, EOM-CCSD or using unrecoupled mixed configurations). We also present general guidelines for computing core-excited states from orbital optimized DFT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源