论文标题
MBTREE:使用恶意行为树检测加密大鼠通信
MBTree: Detecting Encryption RAT Communication Using Malicious Behavior Tree
论文作者
论文摘要
网络跟踪签名匹配是一种可靠的方法来检测主动遥控木马(大鼠)。与面对已知大鼠的恶意网络痕迹的基于统计的检测相比,基于签名的方法可以实现更稳定的性能,从而更可靠性。但是,随着加密技术的发展和伪装技巧,当前的方法具有不准确的签名描述和不灵活的匹配机制。在本文中,我们建议通过提出MBTREE来解决上述问题,MBTREE是一种基于主机级网络跟踪行为来检测加密老鼠命令和控制(C&C)通信的方法。 MBTREE首先将大鼠网络行为建模为通过自动构建每个样本的独特网络痕迹的多级树(MLTREE)来设定的恶意。然后,MBTREE采用检测算法来检测与恶意集合中任何MLTREES相似的恶意网络痕迹。为了说明我们提出的方法的有效性,我们从概率的角度采用了MBTREE的理论分析。此外,我们已经实施了MBTREE来在五个数据集上对其进行评估,这些数据集以复杂的方式进行重新组织以进行全面评估。实验结果证明了MBTREE的准确和健壮,尤其是面对新的新兴良性应用。
Network trace signature matching is one reliable approach to detect active Remote Control Trojan, (RAT). Compared to statistical-based detection of malicious network traces in the face of known RATs, the signature-based method can achieve more stable performance and thus more reliability. However, with the development of encrypted technologies and disguise tricks, current methods suffer inaccurate signature descriptions and inflexible matching mechanisms. In this paper, we propose to tackle above problems by presenting MBTree, an approach to detect encryption RATs Command and Control (C&C) communication based on host-level network trace behavior. MBTree first models the RAT network behaviors as the malicious set by automatically building the multiple level tree, MLTree from distinctive network traces of each sample. Then, MBTree employs a detection algorithm to detect malicious network traces that are similar to any MLTrees in the malicious set. To illustrate the effectiveness of our proposed method, we adopt theoretical analysis of MBTree from the probability perspective. In addition, we have implemented MBTree to evaluate it on five datasets which are reorganized in a sophisticated manner for comprehensive assessment. The experimental results demonstrate the accurate and robust of MBTree, especially in the face of new emerging benign applications.