论文标题

用于主动学习的顺序图卷积网络

Sequential Graph Convolutional Network for Active Learning

论文作者

Caramalau, Razvan, Bhattarai, Binod, Kim, Tae-Kyun

论文摘要

我们提出了一个基于池的新型主动学习框架,该框架在顺序图卷积网络(GCN)上构建。来自数据池的每个图像的特征代表图中的一个节点,边缘编码它们的相似性。通过少数随机采样的图像作为种子标记的示例,我们了解图的参数,以最大程度地减少二进制跨透明镜损失,以区分标记为未标记的节点。 GCN在节点之间执行消息通话操作,因此会诱导强相关的节点的相似表示。我们利用GCN的这些特征来选择与标记的示例完全不同的未标记示例。为此,我们利用了图节点嵌入及其置信度分数,并适应了采样技术,例如核心和基于不确定性的方法来查询节点。我们将新查询的节点的标签从未标记的标签上翻转为标记,重新培训学习者以优化下游任务和图形,以最大程度地减少其修改后的目标。我们在固定预算内继续此过程。我们在6个不同的基准测试中评估了我们的方法:4个真实图像分类,1个基于深度的手姿势估计和1个合成RGB图像分类数据集。我们的方法表现优于几个竞争基线,例如VAAL,学习损失,核心,并在多个应用程序上达到新的最新性能,可以在此处找到实现:https://github.com/razvancaramalau/razvancaramalau/seperential-gcn-for-for-actential-gcn-for-active-active-Learning

We propose a novel pool-based Active Learning framework constructed on a sequential Graph Convolution Network (GCN). Each image's feature from a pool of data represents a node in the graph and the edges encode their similarities. With a small number of randomly sampled images as seed labelled examples, we learn the parameters of the graph to distinguish labelled vs unlabelled nodes by minimising the binary cross-entropy loss. GCN performs message-passing operations between the nodes, and hence, induces similar representations of the strongly associated nodes. We exploit these characteristics of GCN to select the unlabelled examples which are sufficiently different from labelled ones. To this end, we utilise the graph node embeddings and their confidence scores and adapt sampling techniques such as CoreSet and uncertainty-based methods to query the nodes. We flip the label of newly queried nodes from unlabelled to labelled, re-train the learner to optimise the downstream task and the graph to minimise its modified objective. We continue this process within a fixed budget. We evaluate our method on 6 different benchmarks:4 real image classification, 1 depth-based hand pose estimation and 1 synthetic RGB image classification datasets. Our method outperforms several competitive baselines such as VAAL, Learning Loss, CoreSet and attains the new state-of-the-art performance on multiple applications The implementations can be found here: https://github.com/razvancaramalau/Sequential-GCN-for-Active-Learning

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源