论文标题

对称线性/双线性的错误分析helmholtz界面问题部分惩罚的浸入式有限元方法

Error Analysis of Symmetric Linear/Bilinear Partially Penalized Immersed Finite Element Methods for Helmholtz Interface Problems

论文作者

Guo, Ruchi, Lin, Tao, Lin, Yanping, Zhuang, Qiao

论文摘要

本文对Helmholtz方程的接口问题进行了对称线性/双线性部分惩罚的浸入式有限元(PPIFE)方法的错误分析。假设精确解决方案具有通常的分段$ h^2 $规律性,Ppife解决方案的最佳误差范围是在能量规范中得出的,并且通常的$ l^2 $ norm,前提是网格尺寸足够小。进行了一个数值示例来验证理论结论。

This article presents an error analysis of the symmetric linear/bilinear partially penalized immersed finite element (PPIFE) methods for interface problems of Helmholtz equations. Under the assumption that the exact solution possesses a usual piecewise $H^2$ regularity, the optimal error bounds for the PPIFE solutions are derived in an energy norm and the usual $L^2$ norm provided that the mesh size is sufficiently small. A numerical example is conducted to validate the theoretical conclusions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源