论文标题
基于对称启发的希尔伯特空间分配的浅循环量子本质量
Shallow-circuit variational quantum eigensolver based on symmetry-inspired Hilbert space partitioning for quantum chemical calculations
论文作者
论文摘要
对于嘈杂的中间量子量子计算,对资源友好的量子算法的开发仍然非常理想。基于具有单一耦合群集Ansatz的变异量子本质层(VQE),我们证明了分子系统的点组对称性使希尔伯特空间的分配大大减少了通过将变异搜索限制在一个subspace中的变异操作员的数量。此外,我们发现,而不是包括每个激发算子的所有子词,而是足以达到所测试的各种分子所需的准确性,从而导致量子电路的额外缩短。有了这些策略,VQE在一个无噪声量子模拟器上计算,以$ \ mathrm {h} _4 $ square,$ \ mathrm {h} _4 $ chaus和$ \ mathrm {H} _6 $ Hexogon _ 6 $ Hexogon Molecules;虽然受控的NOT(CNOT)门的数量(量子电路深度的度量)减少了最大的35倍。此外,我们引入了一个有效的“得分”参数来对激发操作员进行排名,因此可以首先应用造成较大能量的操作员。使用$ \ mathrm {h} _4 $ square和$ \ mathrm {h} _4 $链作为示例,我们在嘈杂的量子模拟器上证明了前几个变异操作员可以将能量带到化学精度中,而其他操作员并不能改善能量,因为累积噪音超过了variatiant of variational of variational of variatiant variational and variational and variational and satt satz。
Development of resource-friendly quantum algorithms remains highly desirable for noisy intermediate-scale quantum computing. Based on the variational quantum eigensolver (VQE) with unitary coupled cluster ansatz, we demonstrate that partitioning of the Hilbert space made possible by the point group symmetry of the molecular systems greatly reduces the number of variational operators by confining the variational search within a subspace. In addition, we found that instead of including all subterms for each excitation operator, a single-term representation suffices to reach required accuracy for various molecules tested, resulting in an additional shortening of the quantum circuit. With these strategies, VQE calculations on a noiseless quantum simulator achieve energies within a few meVs of those obtained with the full UCCSD ansatz for $\mathrm{H}_4$ square, $\mathrm{H}_4$ chain and $\mathrm{H}_6$ hexagon molecules; while the number of controlled-NOT (CNOT) gates, a measure of the quantum-circuit depth, is reduced by a factor of as large as 35. Furthermore, we introduced an efficient "score" parameter to rank the excitation operators, so that the operators causing larger energy reduction can be applied first. Using $\mathrm{H}_4$ square and $\mathrm{H}_4$ chain as examples, We demonstrated on noisy quantum simulators that the first few variational operators can bring the energy within the chemical accuracy, while additional operators do not improve the energy since the accumulative noise outweighs the gain from the expansion of the variational ansatz.