论文标题
在类型$ s2 $的Fano品种的Chow环上
On the Chow ring of Fano varieties of type $S2$
论文作者
论文摘要
我们表明,某些Fano八倍(作为正交Grassmannian的超平面切片获得,并由Ito-Miura-Okawa-Ouda和Fatighenti-Mongardi进行了研究),具有多重的Chow-künnneNeth分解。作为推论,这八倍的盘子环的行为与K3表面的表现一样。
We show that certain Fano eightfolds (obtained as hyperplane sections of an orthogonal Grassmannian, and studied by Ito-Miura-Okawa-Ueda and by Fatighenti-Mongardi) have a multiplicative Chow-Künneth decomposition. As a corollary, the Chow ring of these eightfolds behaves like that of K3 surfaces.