论文标题

无监督视觉异常检测的歧管

Manifolds for Unsupervised Visual Anomaly Detection

论文作者

Naud, Louise, Lavin, Alexander

论文摘要

从定义上讲,异常是罕见的,因此被标记的示例非常有限或不存在,并且可能不涵盖无法预见的情况。不一定会在培训中遇到异常情况的无监督学习方法将非常有用。生成视觉模型在这方面可以很有用,但不能充分代表正常和异常的数据分布。为此,我们提出了将数据分布嵌入无监督的视觉异常检测中的恒定曲率歧管。通过对歧管形状的理论和经验探索,我们通过具有陀螺仪层的立体式投影开发了一种新型的超球形变异自动编码器(VAE) - 与PoincaréVae完全等同。这种具有多种预测的方法在模型概括方面是有益的,可以产生更可解释的表示。我们在精确制造和检查中介绍了视觉异常基准的最先进结果,并在工业AI方案中展示了现实世界的实用程序。我们进一步证明了关于组织病理学挑战性问题的方法:我们的无监督方法有效地检测到嘈杂的全滑动图像,学习一个平稳,潜在的组织类型的组织,为医疗专业人员提供可解释的决策工具。

Anomalies are by definition rare, thus labeled examples are very limited or nonexistent, and likely do not cover unforeseen scenarios. Unsupervised learning methods that don't necessarily encounter anomalies in training would be immensely useful. Generative vision models can be useful in this regard but do not sufficiently represent normal and abnormal data distributions. To this end, we propose constant curvature manifolds for embedding data distributions in unsupervised visual anomaly detection. Through theoretical and empirical explorations of manifold shapes, we develop a novel hyperspherical Variational Auto-Encoder (VAE) via stereographic projections with a gyroplane layer - a complete equivalent to the Poincaré VAE. This approach with manifold projections is beneficial in terms of model generalization and can yield more interpretable representations. We present state-of-the-art results on visual anomaly benchmarks in precision manufacturing and inspection, demonstrating real-world utility in industrial AI scenarios. We further demonstrate the approach on the challenging problem of histopathology: our unsupervised approach effectively detects cancerous brain tissue from noisy whole-slide images, learning a smooth, latent organization of tissue types that provides an interpretable decisions tool for medical professionals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源