论文标题
在高斯线性因子分析中的分离收缩和选择
Decoupling Shrinkage and Selection in Gaussian Linear Factor Analysis
论文作者
论文摘要
因子分析是一种模拟多元数据依赖性的流行方法。但是,确定因素的数量并获得负载的稀疏方向仍然是主要的挑战。在本文中,我们提出了一种决策理论方法,该方法使负载稀疏表示与因子维度之间的关系。这种关系是通过从多元后部包含的信息摘要完成的。为了构建这样的摘要,我们引入了三步方法。第一步,该模型拟合了保守的因素维度。在第二步中,通过最小化预期的预测损耗函数来获得一系列稀疏点估计量,并减少了数量的因子。在第三步中,在后部摘要中显示了与稀疏负载和因子维度有关的实用性降解。从因子分析文献中使用经典数据中的应用来说明这些发现。我们使用不同的先前选择和因子维度来证明所提出方法的灵活性。
Factor Analysis is a popular method for modeling dependence in multivariate data. However, determining the number of factors and obtaining a sparse orientation of the loadings are still major challenges. In this paper, we propose a decision-theoretic approach that brings to light the relation between a sparse representation of the loadings and factor dimension. This relation is done through a summary from information contained in the multivariate posterior. To construct such summary, we introduce a three-step approach. In the first step, the model is fitted with a conservative factor dimension. In the second step, a series of sparse point-estimates, with a decreasing number of factors, is obtained by minimizing an expected predictive loss function. In step three, the degradation in utility in relation to the sparse loadings and factor dimensions is displayed in the posterior summary. The findings are illustrated with applications in classical data from the Factor Analysis literature. We used different prior choices and factor dimensions to demonstrate the flexibility of the proposed method.